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Abstract

A numerical method and the effective-index method
are applied to a three-layer, constant thickness di-

electric waveguide with smoothly varying dielectric

constant inside the active layer and constant permit-
tivity in the confining layers. The results of the two

methods are compared in terms of the propagation cons-
tant y calculated by each method. Applicatiorl of the
effective-index method facilitates a physical under–

standing of dielectric waveguide modes as well. as pro-
viding an efficient approximate method for calculating
mode behavior.

*Supported by the U.S. Army Research Office.

Introduction

Several papers [1–3] have analyzed mode propagation

in dielectric waveguides with spatially varying refrac-
tive index, usually approximated by parabolic or tanh2

functions, which go to infinity at large distances from

the reference point x = O. We will use the approxima-
tion [4]

K = Ks + AK/cosh2 (x/xo) (1)

to describe the variation of K. This is in closer cor-

respondence with the physical situation and leads to
equatfons with known solutions. The disadvantage in
this case is the fact that the field solutions consist

of a finite (possibly empty) set of confined (trapped)
modes, an infinite set of diverging “leaky” modes and

a continuum of solutions that will be designated as
“radiation” modes.

The 2-dimensional character of the problem due to
the variation of the refractive index in the lateral

(x) and transverse (Y) directions requires the use of

approximate methods or numerical solutions. Among the
former, the effective index method is the most popular

([*I, [41 - [81). Direct numerical integration is pos–

sible, but the computation time required is much larger
than that needed for other methods like the one used
in [1] , which we will apply in this paper.

The following sections describe the class of wave-
guides considered, the numerical method and the appli-
cation of the effective-index method to our problem,
ending with conclusions.

Description of Structures

Figure 1 shows the structure considered in this pa-
per. The confining layers A and C are assumed identi-
cal, their refractive indices being described by

2
‘K ~n

‘ACA
- i s.AnA/ko (2)

aA describes the power loss in these layera and is

constant with distance. The active layer hasn constant
thickness d, with a refractive index

K(X) = II*(x) - i a(x) n(x) /k. (3)

whose dependence with x is considered to be reasonably
well-approximated by (l). In that equation,

AK=KO-KS (4a)

‘o (4b)= K(O) = n: + i go ‘Ofko

2
=n‘s s - i % ‘S’ko (4C)

X. is a parameter related to the width of the stripe

contact in the case of a semiconductor laaer. The

values of power attenuation coefficient and refractive

index inaide the active region far away fromthe atripe
are u and n s, respectively. The quantity go repre-

S

aents the peak power gain under the stripe (x = O),
where the refractive index is n .

0
For An = no-nS>O

the mode will be index-guided, while for An < 0 itwill
be index anti–guided, and this latter effect can even–
tually offset the guiding effect of the gain distribu-

tion.

Numerical Solution

We follow the method used in [1]. Maxwell’e equa-
tions are solved for both the active and the confining
layers, requiring as boundary conditions that the

general solutions inside and outside the active layer

and their normal derivatives match at the interfaces
y = & d12. We also demand that these solutions vanish

at x = t m, Y = 3 m. Application of the method of
separation of variables results in a vertical field
solutton inside the active region of the form

(5)

and a differential equation

2
2 2+k2

~+ [k: ‘s.ti ‘q O co5h;;x/X ) ] $=0
dx

o
(6)

where q is the separation constant. Equation (6)

possesses solutions of the form

L-b. bo- .t+~

$l(X) = [cosh(x/xo)l Ct (tanh[x/xo])

where C~ ( z ) are Gegenbauer polynomials [ 9 ] and
(7)

bo=-~+(~+k;x: AK) % (8)

To satisfy the boundary conditions we require

Re{bo - !} > 0 (9)

For Re{bo} > 0, the fundamental mode (!L=O) is trapped.

Modes of order 9. such that Re{bo – !} < 0 are still

solutions of (6) but diverge as 1x1 + - and will be
designated as “leaky”. Radiation modes would be des-

cribed by other solutions of (6) for arbitrary (non-

inte=er) eizenvalues [91 . The ~eneral solution will

be a“linear”combination-of the ;ew discrete trapped
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modes (8) satisfying (9), plus an integral over the
cent inuum, and the leaky modes must be excluded if the

field has to vanish for 1x1 + m. The importance of the
continuum can be expected to decrease as the number of

trapped modes increases. Since this number is rela–

timely large for structures with modal gains that are
high and not very sensitive to the refractive index

step An = no - ns, this continuum will be neglected.

Hence, the general even solution inside the active re-

gion is approximated by
-.
!4,
max

Yb(x,y) ~ ~ AL OL(X) COS(ql y)
L=O ,2 ,... (lo)

where ~ max is the maximum even value of i for which

~L(x) is confined. Solution of the wave equation for

the confining layers proceeds as in [I]. Matching the
functions and their derivatives with respect to y at
the boundary y = d/2 and applying the orthogonality
relation for the trapped modes results in a finite sys–
tern of homogeneous linear equations

(flT- 1)~= O (11)

‘T= (Ao, A2, . . . . AIwhere A ), I is the unit matrix,
max

and the matrix elements of O. are given by

4 cos(qi d/2) ~

QLk,(Y) = —
sin(ql,~) ~,

1!9.
, (Y)

~xo qLl
(L2 )

.

where
J

~ (X) ~ , (X) (x2-y 2-k2)% dx
=L, i t (Y) = L L a

o
(13)

~l,(x) being the normalized Fourier cosine transform of

IOL(X), and L,L’ = O, 2, . . . . ~ The q! satisfy
max”

(14)

The system of equations (11) has a non-trivial solution

only if det(fEI)=O. Numerical computation of the roots

yields the possible values of the propagation constant y.

Numerical Results

The method was applied to a structure described by

the following parameters:

–1 -1
‘A

= 3.38, aA = 50 cm , US = 50 cm , go = 200cm–1

‘o = 3.595, X. = 6pm,

Direct solution of (11) involves computation of the

Q
!?,1’”

In general, QL1, = Qi,i, but Iik, = IL,L. Valuea

of the modal loss = Re{y} were computed by evaluating
I ~g, (Y) using the exact expression (13). ~is has to

be done once for every value of y. Instead of solving
the complete system (11), we start with a 1x1 matrix,

go on to a 2x2 matrix, etc., and observe that the re-
sult converges relatively faat for a 2x2 case, which
is considered sufficient for our approximation. In
spite of this, the computation time is still impracti-
cally high. An increase in apeed by nearly two orders

of magnitude while still maintaining good accuracy is
achieved expanding the radical in (13) using the bino-
mial theorem (which results in integrals that do not
depend on y) and retaining the first three terms.

Figure 2 shows plots of the modal loss = Re{y} as a
function of An with go, the gain under the stripe, as

a parameter. We notice that, for each value of go, An

can be decreased up to a certain value beyond which the

fundamental mode becomes leaky.

Effective–Index Calculation

The effective–index method consists basically of

reducing a two-dimensional problem to an equivalent
one-dimensional one. In our case, the two-dimensional

character of the problem is given by the dependence of

the dielectric constant on x and y. Aa a first appro–

ximation, the variation in one direction (in our case,

x) is neglected; this is justified if this variation

is much less than that in the y direction. This is
equivalent to approximating the waveguide with a sim–

ple 3–layer guide whose dielectric constants do not

vary with x. The solution of this problem yields the
transverse or vertical variation of the field. Next,

the original equation describing the 2–dimensional
equation in x can be solved for the lateral variation

of the field, and the overall solution is approximated
by the product of this lateral field and the vertical
field found from the 3–layer problem. We start with
the wave equation in 2 dimensions:

V; Y+ [yz+k; K(x,y)] Y = O (15)

For the simple 3-layer guide we assume K(x) = Ko inside

the active layer. Now, we transform (15) making
Y(x,Y) = O(X) $(y), multiplying it by o*(Y) and inte–

grating it over y from –m to m, and obtain

2
222 2

AK
eff

~~- + [Y -qeff+ko ‘s eff+ki) ] $=0 (16)
dx cosh2(x/xO)

2
with

2

‘eff

22
‘TkOxO-p-kOKA

‘S eff = r ‘S

AK =rAK
eff

where r is the filling or confinement

Equation (16) has the same form as eq.

also have polynomial solutions similar

represent trapped modes:

(17$

(17b)

(17C)

factor.

(6). It will

to ( 7) that

l-boeff b eff-g+~

$l(X) = [cosh(x/xo)l c; (tanh ~

(18 )
!=0, 1, 2, . . .

‘here bO eff
is defined as in (8) with AK replaced by

r AKandpis the eigenvalue of the simple 3-layer problem

For the fundamental mode, i = O, and we obtain

2 2
Y2 = ‘kO ‘A - (b. eff/x:) - (p2-k~ r AK) (19)

for the propagation constant.

Discussion

Values of y obtained using (19) are compared with
those obtained with the numerical method in fig. 3.

Solutions are very close for all values of An for which
the mode exhibits a gain which is relatively high and

with low sensitivity to An. The results differ moat in
the range of An for which the mode has a net loss or
has a relatively low gain with higher sensitivity to An.

Figure 4 gives the required value of the peak power

gain go under the stripe to obtain a given modal gain

G, as a function of An, using the effective-index method.
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Also included is the region for which the fundamental
mode becomes leaky. The vertical confinement factor r
did not vary appreciably with An; a typical value for

the case considered was I’ = 0.4963. We see that

lateral variations in the refractive index affect the

gain much more by altering the lateral field distribu-
tion than by affecting the vertical variation.

The effective-index method is seen to be a fast and

relatively accurate way to obtain the field distribu–

tions for the class of waveguides considered, forwhich

the numerical method we used is not practical for ex-
tensive modeling due to its long computation time in

spite of all approximations. The remarkable agreement

between the effective-index method and experimental

results found by other workers ( [10] ) increases our
confidence in this powerful approximate method.
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Figures

Waveguide structure considered

Modal loss as a function of An with peak power gain

go as a parameter. Regions at left of vertical

lines correspond to leaky fundamental mode.

Modal loss Re{y} as a function of An for numeric
(1x1 matrix) and effective-index methods.
Peak Dower gain under contact stripe (E.) as a
function of’”

Shaded area
fundamental

-i ,
An with modal gain as a pargmeter.

shows region corresponding to leaky
mode.
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