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Abstract

A numerical method and the effective-index method
are applied to a three-layer, constant thickness di-
electric waveguide with smoothly varying dielectric
constant inside the active layer and constant permit-
tivity in the confining layers. The results of the two
methods are compared in terms of the propagation cons-
tant y calculated by each method. Application of the
effective-index method facilitates a physical under-
standing of dielectric waveguide modes as well as pro-
viding an efficient approximate method for calculating
mode behavior.
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Introduction

Several papers [1-3] have analyzed mode propagation
in dielectric waveguides with spatially varying refrac-
tive index, usually approximated by parabolic or tanh
functions, which go to infinity at large distances from
the reference point x = 0. We will use the approxima-
tion [4]

K =k, + AK/COShZ (x/xo) (6B

S
to describe the variation of . This is in closer cor-
respondence with the physical situation and leads to
equations with known solutions. The disadvantage in
this case is the fact that the field solutions consist
of a finite (possibly empty) set of confined (trapped)
modes, an infinite set of diverging "leaky' modes and

a continuum of solutions that will be designated as
"radiation" modes.

The 2-dimensional character of the problem due to
the variation of the refractive index in the lateral
(x) and transverse (y) directions requires the use of
approximate methods or numerical solutions. Among the
former, the effective index method is the most popular
([2]1, {41 - [8]). Direct numerical integration is pos-
sible, but the computation time required is much larger
than that needed for other methods like the one used
in [1], which we will apply in this paper.

The following sections describe the class of wave-
guides considered, the numerical method and the appli-
cation of the effective-index method to our problem,
ending with conclusionms.

Description of Structures

Figure 1 shows the structure considered in this pa-
per. The confining layers A and C are assumed identi-
cal, their refractive indices being described by

. 2
=KgEmy -1 oaAnA/ko (2)

K C

A

N describes the power loss in these layers and is

constant with distance. The active layer has a constant
thickness d, with a refractive index

€@ = 2700 - 1 a0 n@)/k, 3)
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whose dependence with x is considered to be reasonably
well-approximated by (1). In that equation,

Ak = Ko = g (4a)
2
Ky = k(0) = oy + 1 g, nO/k0 (4b)
2 .
kg = mg = 1 ag n./k, (4c)

X is a parameter related to the width of the stripe

contact in the case of a semiconductor laser. The
values of power attenuation coefficient and refractive
index inside the active region far away from the stripe

are og and oo, regpectively. The quantity 8y repre-

sents the peak power gain under the stripe (x = 0),
where the refractive index is n,. For An = no—ns>0

the mode will be index-guided, while for An < 0 itwill
be index anti-guided, and this latter effect can even-—
tually offset the guiding effect of the gain distribu-
tion.

Numerical Solution

We follow the method used in [1]. Maxwell's equa-
tions are solved for both the active and the confining
layers, requiring as boundary conditioms that the
general solutions inside and outside the active layer
and their normal derivatives match at the interfaces
y = + d/2. We also demand that these solutions vanish
at x = + ®, y =+ =, Application of the method of
separation of variables results in a vertical field
solution inside the active region of the form

¢o(y) = [i;: qy] (s5)
and a differential equation
2
dx cosh (x/xo) (6)

where q is the separation constant. Equation (6)

possesses solutions of the form

2=b,, b0—1+5
wl(x) = [cosh(x/xo)] c, (tanh[x/xo])
where Ci(z) are Gegenbauer polynomials [9] and 2
by = - ¥+ G+ 1 2 a0% (8)
To satisfy the boundary conditions we require
Re{by - 2} > 0 (9

For Re{bo} > 0, the fundamental mode (#=0) is trapped.
Modes of order £ such that Re{bo ~ 2} < 0 are still

solutions of (6) but diverge as [x[ ~+ o agnd will be
designated as "leaky". Radiation modes would be des-
cribed by other solutions of (6) for arbitrary (non-
integer) eigenvalues [9]. The general solution will
be a linear combination of the few discrete trapped
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modes (8) satisfying (9), plus an integral over the
continuum, and the leaky modes must be excluded if the
field has to vanish for |x| + o, The importance of the
continuum can be expected to decrease as the number of
trapped modes increases. Since this number is rela-
tively large for structures with modal gains that are
high and not very sensitive to the refractive index
step An = 0y = Ng, this continuum will be neglected.

Hence, the general even solution inside the active re-
gion is approximated by

%
max

v (x,y) B} A, ¥, (x) coslq, y)
b 4=0,2,... * * S ET))

where Zmax is the maximum even value of % for which

wl(x) ig confined. Solution of the wave equation for

the confining layers proceeds as in [1]. Matching the
functions and their derivatives with respect to y at
the boundary y = d/2 and applying the orthogonality
relation for the trapped modes results in a finite sys-
tem of homogeneous linear equations

@ - DA =0 (11)

where Afr= (AO, A2, ey A ), I is the unit matrix,

lmax
and the matrix elements of Q) are given by

4 cos(ql a/2) /ﬁ;

Qo (y) = LAY

4
™™=, q,: sin(q,,5) YN _,
0 22 2'2 2 @2)

@

- - 2.2
I, (0 = JO T, 00 Ty 0 Gl ax

where
— 13)
wg(x) being the normalized Fourier cosine transform of

. —
wz(x), and 2,8' =0, 2, ..., lmax'
2 2

2 2,2
a, =Y + k0 kg + (bo - ) /x0

The q, satisfy

(14)

The system of equations (11) has a non-trivial solution
only if det(Q-I)=0. Numerical computation of the roots

yields the possible values of the propagation constant vy.

Numerical Results

The method was applied to a structure described by
the following parameters:

-1 -1 -1
n, = 3.38, a, = 50 ecm 7, ag = 50 em 7, gy = 200cm
ng = 3.595, Xq = 6um.
Direct solution of (11) involves computation of the
Qll" In general, sz' = Qz'z’ but IZ&’ = Iz'z' Values

of the modal loss = Re{y} were computed by evaluating
Izz'(Y) using the exact expression (13). This has to

be done once for every value of y. Instead of solving
the complete system (11), we start with a 1xl matrix,
go on to a 2x2 matrix, etc., and observe that the re-
sult converges relatively fast for a 2x2 case, which
is considered sufficient for our approximation. In
spite of this, the computation time is still impracti-
cally high. An increase in speed by nearly two orders
of magnitude while still maintaining good accuracy is
achieved expanding the radical in (13) using the bino-
mial theorem (which results in integrals that do not
depend on y) and retaining the first three terms.
Figure 2 shows plots of the modal loss = Re{y} as a
function of An with 80> the gain under the stripe, as
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a parameter. We notice that, for each value of 8g» An

can be decreased up to a certain value beyond which the
fundamental mode becomes leaky.

Effective-Index Calculation

The effective-index method consists basically of
reducing a two-dimemsional problem to an equivalent
one-dimensional one. In our case, the two-dimensional
character of the problem is given by the dependence of
the dielectric constant on x and y. As a first appro-
ximation, the variation in one direction (in our case,
x) is neglected; this is justified if this variation
is much less than that in the y direction. This is
equivalent to approximating the waveguide with a sim-
ple 3-layer guide whose dielectric constants do not
vary with x. The solution of this problem yields the
transverse or vertical variation of the field. Next,
the original equation describing the 2-dimensional
equation in x can be solved for the lateral variation
of the field, and the overall solution is approximated
by the product of this lateral field and the vertical
field found from the 3-layer problem. We start with
the wave equation in 2 dimensions:

2 2 2
Ve Y+ v+ ky <(x,y)] ¥ =0 (15)
For the simple 3-layer guide we assume k(x) = k, inside

0

the active layer. Now, we transform (15) making
Y(x,y) = P(x) ¢(y), multiplying it by ¢*(y) and inte-
grating it over y from -« to =, and obtain

2 Ak
A, 2 2 .2 2 "eff _
I WY T 7 =0 48
dx cosh (x/xo)
. 2 _ 2 2 2
with Qogg = T kO X5 =P - ko K (173
“seff ~ I s (17b)
AKeff =T Ak (17¢)
where T is the filling or confinement factor.
Equation (16) has the same form as eq. (6). It will

also have polynomial solutions similar to (7) that
represent trapped modes:
2-b.eff b

b, G0 = [cosh(x/xy)] 0 ClO

eff-g+y %
(tanh —)
*0

1s)

where b0 esf is defined as in (8) with Ax replaced by

I Ac and p is the eigenvalue of the simple 3~layer problem
For the fundamental mode, £ = 0, and we obtain

2

2 2 2 2.2
Yo o= mky <y = by pp/xg) = (PTkg T AK) 19

for the propagation constant.
Discussion

Values of y obtained using (19) are compared with
those obtained with the numerical method in fig. 3.
Solutions are very close for all values of An for which
the mode exhibits a gain which is relatively high and
with low sensitivity to An. The results differ most in
the range of An for which the mode has a net loss or
has a relatively low gain with higher semsitivity to An.

Figure 4 gives the required value of the peak power
gain 8 under the stripe to obtain a given modal gain

G, as a function of An, using the effective-index method



Also included is the region for which the fundamental
mode becomes leaky. The vertical confinement factor T
did not vary appreciably with An; a typical value for
the case considered was T' ~ 0.4963. We see that
lateral variations in the refractive index affect the
gain much more by altering the lateral field distribu-
tion than by affecting the vertical variationm.

The effective-index method is seen to be a fast and
relatively accurate way to obtain the field distribu-
tions for the class of waveguides considered, for which
the numerical method we used is not practical for ex~
tensive modeling due to its long computation time in
spite of all approximations. The remarkable agreement
between the effective-index method and experimental
results found by other workers ({10]) increases our
confidence in this powerful approximate method.
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Figures

1. Waveguide structure considered
2. Modal loss as a function of An with peak power gain
gy as a parameter. Regions at left of vertical

lines correspond to leaky fundamental mode.

3. Modal loss Re{y} as a function of An for numeric
(1x1l matrix) and effective-index methods.

4. Peak power gain under contact stripe (g.) as a
function of An with modal gain as a parameter.
Shaded area shows region corresponding to leaky
fundamental mode.
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